Belastungstest für Verbindungen

Derzeit beschäftigt sich die Arbeitsgruppe Physik Nanostrukturierter Materialien/Mikromaterialien an der Fakultät für Physik der Universität Wien gemeinsam mit Spezialisten von Siemens und Infineon Technologies mit diesem Thema. Es geht um Drahtverbindungen in IGBT, elektronische Hochleistungskomponenten, die häufig in Antriebssystemen mit extrem langer Lebensdauer eingesetzt werden. In diesem Umfeld müssen sie einiges aushalten. „Bei Windturbinen gibt es nicht nur immer wieder Stoßbelastungen. Wenn sich das Rad langsam dreht, werden die Verbindungsdrähte auch thermisch-dynamisch belastet“, berichtet Alexander Trnka, Siemens. „Das führt zu einer Materialermüdung und in der Folge zu Ausfällen.“ Was eine Verbindung aushält, konnte bisher nur durch aufwendige thermische Prüfverfahren getestet werden, die sehr lange dauern. „Im Prinzip konnten wir das Fehlerverhalten bisher nicht so präzise vorhersagen, dass die Bauteillieferanten ihr IGBTs genau auf den spezifischen Einsatzzweck abstimmen konnten“, erklärt Berl die Situation.

Es konnte eindeutig bewiesen werden, dass mit diesem Resonanzprüfverfahren mehrere Dauerkurven von Drahtbund-Mikroverbindungen bei Bauteilen der Leistungselektronik unter Belastung...
Ergebnisse der Forschung

- **Mit der neuen Methode lassen sich**
 - Zuverlässigkeitsdiagramme für die Anwender von Drahtbondverbindungen erstellen und
 - neue Zuverlässigkeitskonzepte und Lebensdauermodelle entwickeln

- **Die patentierte ultraschnelle Ermüdungsprüfung ist als**
 - Screening-Test für die Qualitätsbeurteilung von Drahtbondverbindungen geeignet und
 - soll in Zukunft auch für weitere Materialkombinationen eingesetzt werden

rasch erstellt werden können. „Gegenüber bisherigen Prüfmethoden ergibt sich eine enorme Zeit- und Kostensparnis. Eine Zyklendauer konnte in nur 1,4 Stunden erreicht werden“, nennt Physiker Vladislav Damec, Siemens, das große Plus des Verfahrens. „Vergleichbare thermische Belastungstests benötigen einige Monate bis Jahre.“ Ein weiterer Vorteil liegt darin, dass Daten auch bei kleinen Temperaturunterschieden ermittelt werden können. „Diese sind für die Auslegung von Windkraftanlagen essenziell, können aber mit anderen Tests aus Zeitgründen nicht experimentell bestimmt werden“, erklärt Damec.

Wolfgang Berl: „Die ultraschnelle Ermüdungsprüfung ist als Screening-Test für die Qualitätsbeurteilung von Drahtbondverbindungen sehr gut geeignet und steht in Teilbereichen der Leistungslektronik als Alternative zu den konventionellen Methoden bereits vor dem Durchbruch.“ In Zukunft soll die Methode auch für weitere Materialkombinationen eingesetzt werden. „Unser Verfahren ist nicht auf die vorhandenen Bauteile beschränkt“, sieht Golta Khatibi eine breite Palette von Einsatzmöglichkeiten.

„Auch beim Einsatz von Kupferdrähten kann es zur Berechnung der richtigen Dimensionierung eingesetzt werden.“ Grund genug für eine Weiterführung der Forschung im Rahmen des Comet-Programms mit zusätzlichen industriellen und wissenschaftlichen Partnern.

Mehr Infos
- www.siemens.at/ad
- physnano.univie.ac.at/micromater